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Introduction

Cardiovascular variables exhibit, when observed on a beat-to-beat
basis, rhythmical changes, referred to as spontaneous variability

Spontaneous variability reflects the action of cardiovascular control
mechanisms operating to guarantee the functioning of our organism
In every condition

In healthy condition modifications of the state of the cardiovascular
control result in significant changes of spontaneous variability

Pathological conditions dramatically alter spontaneous variability



Spontaneous beat-to-beat variability
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The state of the cardiovascular control influences
spontaneous variability
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Cardiovascular diseases influence
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Introduction

Successful separation between different experimental conditions
within the same population and between different populations within
the same experimental condition depends on the significance of the
features extracted from cardiovascular variability signals

Symbolization and pattern formation strategies, indissolubly
linked to the concept of partition (and, more generally, to coarse
graining), provide features and indexes helpful to distinguish
experimental conditions and/or groups



Alm

To review symbolization and pattern formation strategies
exploited to distinguish experimental conditions and/or groups
In cardiovascular control studies
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Symbolization

Symbolization is a procedure transforming samples of a series
Into symbols belonging to a finite alphabet

Code: all the samples belonging to the same bin are transformed
Into the same symbol

The most utilized binning procedures are:

1) uniform quantization A. Porta et al, Biol Cybern, 78:71-78, 1998

A. Portaet al, IEEE TBME, 54:94-106, 2007
N. Wessel et al, Phys Rev E, 61:733-739, 2000
D. Cysarz et al, AJP, 292:R368-R372, 2007

3) sample-centered uniform quantization A Portaetal, IEEE TBME, 54:94-106, 2007
S.M. Pincus, Chaos, 5:110-117, 1995

] _ _J.S. Richman et al, AJP, 278:H2039-H2049, 2000
4) sample-centered non uniform quantization

A. Porta et al, IEEE TBME, 54:94-106, 2007

2) non uniform quantization



Uniform quantization
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Non uniform quantization
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Sample-centered uniform guantization

1.1
& ..._...._........._..........ﬁﬁﬁ.ffffffffﬁf:.fff.ﬁZ.f.ﬁ.f..ﬁfffiZ.'Z.f.fff.fffff.ffffff.ﬁ%f.’f..ff.fffﬂff?fffiffffff.ﬁﬁ“
0.8

1 # beats 256

Bins are constructed around each sample and have the same width ¢

several symbols can be associated
> y

Bins overla
P to the same sample



Sample-centered non uniform guantization
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Pattern formation via delay embedding reconstruction
x “(i-1)

original
series
I-L -2 -1 1 1+l 42 i+L
past > present < future
forward backward symbolization
@ procedure
: : : N : . symbolic
s(i-L) - 8(1-2) s(i-1) [s(i) [s(i+1) s(i+2) - s(i+L) ﬁeries

s ©(i-1) = (s(i-1), ...., s(i-L)) —=>  causal pattern of s(i)
s A(+1) =(s(i+1), ...., s(itL)) —=> anti-causal pattern of s(i)

s(i) is the forward image of s, ©(i-1)
s(i) is the backward image of s, A(i+1)



Causal patterns are linked to predictability

s(i) might be predicted using s, “(i-1)

Conditional distribution Conditional distribution Conditional distribution
of s(i) given s “(i-1) of s(i) given s, “(i-1) of s(i) given s ©(i-1)
1 1 1
-
s(i) can be fully predicted s(i) can be largely predicted s(i) cannot be predicted

given L previous symbols given L previous symbols given L previous symbols



Causal patterns are linked to conditional entropy

The information carried by s(i) might be reduced given s, “(i-1)

Conditional distribution Conditional distribution
of s(i) given s “(i-1) of s(i) given s, “(i-1)
1 1
=
No information is carried A certain amount of information
by s(i) given L previous is carried by s(i) given L

symbols previous symbols

Conditional distribution
of s(i) given s ©(i-1)

The information carried by s(i)
cannot be reduced given L
previous symbols



Anti-causal patterns are linked to reversibility

Since reversing time makes anti-causal patterns into
causal ones (and vice versa), anti-causal patterns are
helpful to test reversibility (i.e. the preservation of the
statistical properties after time reversal)

Conditional distribution Conditional distribution
of s(i) given s, ©(i-1) of s(i) given s, A(i+1)
1 1
]

Since the conditional distributions are different, statistical properties
are not maintained after time reversal
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Uniform partition

- uniform quantization

: uniform partition
- delay embedding procedure

L=3, q=6

A X(I-2)

- Cells are hyper-cubes of side ¢

e - The number of cells are g-

- Cells have the same size

. -Cellscover the entire embedding space
4 xi) - Cells do not intersect

- The number of patterns in each cell
might be variable

x(i—C;)



Non uniform partition

- non uniform q_uantlzatlon non uniform partition
- delay embedding procedure

L=3, q=6

A X(i-2)

- Cells are hyper-boxes
Ao - The number of cells are g-
- Cells have different size
- Cells cover the entire embedding space
—— Cells do not intersect

™ - The number of patterns in each cell
might be made constant

x({-3) :



Pattern-centered uniform coarse graining

pattern-centered
———> uniform coarse
graining

- sample-centered uniform quantization
- delay embedding procedure

 xi2) LT3

- Cells are hyper-spheres of radius ¢
- The number of cells are N-L+1
- Cells are built around patterns
- Cells have equal size
_ - Cells cover the entire embedding space
4D _ Cells intersect
- The number of patterns in each cell
might be variable

x(i-3)



Pattern-centered non uniform coarse graining

pattern-centered
——> non uniform
coarse graining

- sample-centered non uniform guantization
- delay embedding procedure

- Cells are hyper-spheres of radius ¢
- The number of cells are N-L+1
- Cells are built around patterns
- Cells have different size
- Cells cover the entire embedding space
- _ Cells intersect
- The number of patterns in each cell
might be made constant

X(i-3)
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Techniques for the optimization of the pattern length

1) Fixing the pattern length, L, according to the series length,
N, and the number of symbols, g

2) Using a strategy penalizing unreliable in-sample prediction or
conditional entropy

3) Exploiting in-sample predictability loss or conditional entropy rise
while increasing L using pattern-centered non uniform coarse graining

4) Taking advantage from out-of-sample prediction



Fixing the pattern length

L = pattern length
N = series length
g = number of symbols

Several patterns are present

N >> g ) .
In each cell of partition

Example

In short-term cardiovascular variability analysis

=6

N=300 = & L=3

A. Porta et al, IEEE Trans Biomed Eng, 48:1282-1291, 2001



Length-three pattern distribution
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Using a strategy penalizing unreliable in-sample
prediction or conditional entropy

Conditional distribution
of s(i) given s (i-1)

Perfect in-sample prediction or false certainty ?

If the number of s, “(i-1) is large == Reliability of prediction is high

If the number of s, “(i-1) is small ==> Reliability of prediction is low

Insufficient knowledge, likely

i
It the number of s, *(i-1) 1s 1 to produce a false certainty



Using a strategy penalizing unreliable in-sample
prediction or conditional entropy

If the number of s, ©(i-1) is 1

Conditional distribution Conditional distribution
of s(i) given s (i-1) of s(i) given s (i-1)
1 > 1
| [ [ [ |
Likely false certainty True uncertainty

Optimal L minimizes mean square prediction error or
conditional entropy



Normalized corrected conditional entropy
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Sample-centered non uniform coarse graining implies
In-sample predictability loss or conditional entropy
rise at large L

Conditional distribution Conditional distribution Conditional distribution  Conditional distribution
of s(i) given s, _,%(i-1) of s(i) given s _;°(i-1) of s(i) given s, _,“(i-1) of s(i) given s, _“(i-1)

—

»
»

L

At low L, increasing L might be helpful to unfold dynamics,
thus improving predictability and reducing conditional entropy

At high L, increasing L leads to the increase of cell size, thus
decreasing predictability and increasing conditional entropy

Optimal L minimizes mean square prediction error or
conditional entropy



Normalized k-nearest-neighbor
conditional entropy
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Out-of-sample prediction

First half Second half
1.1 :
0.8

@ # beats @ 512

- Construction of the pattern library - test for the predictor as a

- Assessment of the conditional function of L
distributions @
- Definition of the predictor

Optimal L minimizes mean square
out-of-sample prediction error
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Techniques to reduce the redundancy of patterns

L=3, =6

A X(I-2)

A s

x(i-é)

Adjacent and non adjacent cells are merged according to
some criteria



Redundancy reduction technique based on the frequency
content of the patterns

S={0,1} and s, °={s, (i), with i=1,...,N-L+1}

Most stable
atterns {(0,0,...,0,0), (1,1,...,1,1)}
Frequency of
{0y ...} the dominant
rhythm
Most variable
pat'[erns {(0919"'9091)9 (19099190)}




Example of redundancy reduction technigue based on
the frequency content of the patterns

$={0,1,2,3,4,5} and s, “={s, “(i), with i=1,...,N-L+1} with L=3
Pattern number =—=> 63=216
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A. Porta et al, IEEE Trans Biomed Eng, 48:1282-1291, 2001
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Symbolic dynamics and autonomic nervous system

70

T30 T45 T60 T75 T90

T15

A. Porta et al, Am J Physiol, 293:H702-H708, 2007



Redundancy reduction technique based of the
Shannon entropy (SE) of the patterns

S={0,1} and s, °={s, (i), with i=1,...,N-L+1}

. SE=0
Least informative 0.0.....0.0). (1.1 1.1
patterns {(0,0,...,0,0), (1,1,...,1,1)}
Oorl
{..,..}
SE=log2
Most informative :

patterns {0,1,...,0,1), (0,...,0,1,...,1), ...} 0

0 1



Example of redundancy reduction technique based on the
entropy of the patterns

S={0,1} and s, “={s, (i), with i=1,...,N-L+1} with L=8
Pattern number ==> 28=256
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Symbolic dynamics and autonomic nervous system

Binary patterns of length L=8 with ApEn=0.0
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D. Cysarz et al, Comp Biol Med, 42:313-318, 2012
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Time domain indexes derived from symbolization and
pattern formation strategies

- Sample frequency of a specific pattern
N. Wessel et al, Phys Rev E, 61, 733-739, 2000

- Sample frequency of a specific pattern class

A. Porta et al, IEEE Trans Biomed Eng, 48, 1282-1291, 2001
D. Cysarz et al, Comp Biol Med, 42, 313-318, 2012

- Forward mean square prediction error between the current value

and its best prediction based on causal patterns

A. Porta et al, IEEE Trans Biomed Eng, 47, 1555-1564, 2000
A. Porta et al, IEEE Trans Biomed Eng, 54, 94-106, 2007
N. Wessel et al, Med Biol Eng Comput, 44, 321-330, 2006

- Backward mean square prediction error between the current value

and its best prediction based on anti-causal patterns
A. Porta et al, Phil Trans R Soc A, 367:1359-1375, 2009



Information domain indexes derived from
symbolization and pattern formation strategies

- Shannon entropy of the pattern distribution

N. Wessel et al, Phys Rev E, 61:733-739, 2000
A. Porta et al, IEEE Trans Biomed Eng, 48:1282-1291, 2001

- Entropy rate of the series

corrected approximate entropy (CApEN)

S.M. Pincus, Chaos, 5:110-117, 1995
A. Porta et al, J Appl Physiol, 103:1143-1149, 2007

sample entropy (SampEn)

J.S. Richman and J.R. Moorman, Am J Physiol, 278:H2039-H2049, 2000

corrected conditional entropy (CCE)
A. Porta et al, Biol Cybern, 78:71-78, 1998

- Mutual information
D. Hoyer et al, IEEE Trans Biomed Eng, 52:584-592, 2005
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Application on symbolic dynamics in clinics

Nonlinear Indices of Heart Rate Variability in Chronic Heart
Failure Patients: Redundancy and Comparative Clinical Value

ROBERTO MAESTRI, M.S.,* GIAN DOMENICO PINNA, M.S.,* AGOSTINO ACCARDO, PH.D.,}
PAOLO ALLEGRINI, PH.D.,i RITA BALOCCHI, PH.D.,§ GIANNI D’ADDIO, M.S.,*
MANUELA FERRARIO, M.S.,§ DANILO MENICUCCI, M.S.,§ ALBERTO PORTA, PH.D.,**
ROBERTO SASSI, PH.D.§,tt MARIA GABRIELLA SIGNORINI, PH.D.,§ MARIA TERESA LA

ROVERE, M.D.,11 and SERGIO CERUTTI, PH.D.§ [Correction added after online publication 7 March 2007:

author listing has been amended to include more complete author names. ]

From the *Dipartimento di Bioingegneria, Fondazione S. Maugeri, IRCCS, Montescano and Telese, Italy; tDipartimento di Elettronica e

Informatica, Universita di Trieste, Italy; {Dipartimento di Fisica, Universita di Pisa, Italy; §Istituto di Fisiologia Clinica, CNR, Pisa, Italy;

§Dipartimento di Bioingegneria, Politecnico di Milano, Italy; **Dipartimento Scienze Precliniche, LITA Vialba, Universita degli Studi di

Milano, Italy; {{Dipartimento di Tecnologie dell’Informazione, Universita degli Studi di Milano, Italy; and {}Dipartimento di Cardiologia,
Fondazione S. Maugeri, IRCCS, Montescano, Italy



Best multivariate clinical model for the prediction of the
total cardiac death in heart failure population

TABLE §
Cox Prognostic Model Based on Known Clinical and Functional Risk
Factors
Regression Standard Bootstrap
Variable Coefficient Error P Value Selection (%)
NYHA 0.718 0.245 0.003 90
LVEF —0.053 0.019 0.006 91
Peak VO, _ —0.045 0.026 0.084 64
SAP —0.015 0.009 0.123 61
Etiology ischemic — — 0.418 20
LVEDD — — 0.718 14
VPCs/hour — — 0.769 9
Sodium — — 0.842 15

Variable selection was carried out by backward elimination (significance
level: 15%). The last column reports the frequency of selection of variables
using the same procedure on 500 bootstrap samples.

For the definition of variables see Table 2. Variables with missing coefficient
and standard error are those removed from the full model by the backward
elimination procedure.

Note that at the selected 15% significance level only the top four variables
are left in the final “clinical” model. As can be seen, these variables also
performed well in the bootstrap validation.

R. Maestri et al, J Cardiovasc Electrophysiol 18:425-433, 2007



Linear and non linear indexes derived from heart

- Linear indexes In the time and frequency domains

rate variability

TABLE 1

List of the 20 Nonlinear Indices of Heart Rate Variability Examined in the Study, with a Classification of the Families to Which They Belong

Variable Description Family

1VP One variation pattern Symbolic dynamics

2UVP Two unlike variations pattern Symbolic dynamics

BNI Binary nonrandomness index Symbolic dynamics

BLZC Binary Lempel-Ziv complexity Entropy

DELTA Long-range memory in RR time series Entropy

SampEn Sample entropy Entropy

DFA Short-term detrended fluctuation analysis Fractality-multifractality

HFD Higuchi fractal dimension Fractality-multifractality

1/f slope Slope of the power-law regression line Fractality-multifractality

SMFSr Ratio between the width of the singularity multifractal spectrum and the same quantity Fractality-multifractality
after phase randomization

UPI Non-normalized unpredictability index Predictability

UPIn Normalized unpredictability index Predictability

IMAI1 Ratio between the power associated with the mode with frequency closest to 0.1 Hz Empirical mode decomposition
(LF1) and the power of modes with frequencies higher than LF1

IMAI2 Ratio between the power associated with the first mode with frequency <LF1 and the Empirical mode decomposition
modes with frequencies higher than LF1 (see IMAI1)

pLF2 Power associated with the first mode with frequency < LF1 (see IMAI1) Empirical mode decomposition

LEN Length of the bi-dimensional Poincaré plots Poincaré plots

SD12 Ratio between the axes of the ellipse fitting bi-dimensional Poincaré plots Poincaré plots

RADX Radius of the semi-ellipse of inertia along the X axis of the 3-dimensional Poincaré plot Poincaré plots

RAD.Y Radius of the semi-ellipse of inertia along the Y axis of the 3-dimensional Poincaré plot Poincaré plots

RADZ Radius of the semi-ellipse of inertia along the Z axis of the 3-dimensional Poincaré plot Poincaré plots

R. Maestri et al, J Cardiovasc Electrophysiol 18: 425-433, 2007



Additive predictive value to the best multivariate
clinical model

TABLE 7
Additive Predictive Values of HRV Parameters to the Clinical Predictors

Bootstrap
Variable Family PValue P <0.05(%)
IMAIl Empirical mode decomposition 0.166 27
1/fslope  Fractality-multifractality 0.571 8
RAD.Y Poincaré plots 0.379 11
SMFSr Fractality-multifractality 0.101 31
HFD Fractality-multifractality 0.385 12
RAD_X Poincaré plots 0.350 15
DELTA Entropy 0.797 7
| 1VP Symbolic dynamics 0.007 74 |
SampEn Entropy 0.461 15
BNI Symbolic dynamics 0:512 9
IMAI2 Empirical mode decomposition 0.023 67
SD12 Poincaré plots 0.123 35

The table reports the P values for selected variables in each cluster, after
entering them into the prognostic model shown in Table 5. The last column
reports the percentage of times the variable entered the model with a P
value < 0.05 in the 500 bootstrap samples.

R. Maestri et al, J Cardiovasc Electrophysiol 18: 425-433, 2007



Conclusions

Symbolization procedures and pattern formation techniques
Impose a coarse graining over the multidimensional space

Technigues to optimize the pattern length are necessary to
make consistent indexes derived from symbolization and
pattern formation strategies

Technigues to reduce redundancy of patterns are necessary to
focus a limited amount of features

Symbolization and pattern formation strategies provided
Indexes improving the best multivariate model based on
traditional clinical parameters for the prediction of total

cardiac death in heart failure population



